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Abstract

We develop a new kind of “space-filling” curves, connected Fer-
mat spirals, and show their compelling properties as a tool path fill
pattern for layered fabrication. Unlike classical space-filling curves
such as the Peano or Hilbert curves, which constantly wind and bind
to preserve locality, connected Fermat spirals are formed mostly
by long, low-curvature paths. This geometric property, along with
continuity, influences the quality and efficiency of layered fabrica-
tion. Given a connected 2D region, we first decompose it into a set
of sub-regions, each of which can be filled with a single continuous
Fermat spiral. We show that it is always possible to start and end
a Fermat spiral fill at approximately the same location on the outer
boundary of the filled region. This special property allows the Fer-
mat spiral fills to be joined systematically along a graph traversal
of the decomposed sub-regions. The result is a globally continuous
curve. We demonstrate that printing 2D layers following tool paths
as connected Fermat spirals leads to efficient and quality fabrica-
tion, compared to conventional fill patterns.

Keywords: connected Fermat spirals, space-filling curve, layered
fabrication, tool path, continuous fill pattern

Concepts: •Computing methodologies → Parametric curve
and surface models; Shape analysis;

1 Introduction

The emergence of additive manufacturing technologies [Gibson
et al. 2015] has led to growing interests from the computer graphics
community in geometric optimization for 3D fabrication. The fo-
cus of many recent attempts has been on shape optimization: how
to best configure a 3D shape, e.g., via hollowing or strengthening,
to achieve quality and cost-effective fabrication. In this work, we
look at the problem from a different angle. Instead of addressing
the higher-level question of what to print, we examine lower-level
yet fundamental issues related to how to print a given object.

At the most elementary level, additive or layered fabrication oper-
ates by moving a print head which extrudes or fuses print material
layer by layer. When printing each layer, the print head follows a
prescribed tool path to fill the 2D region defined by the shape of
the printed object. Topologically, continuity of a tool path is crit-
ical to fabrication. A tool path discontinuity or contour plurality
forces an on-off switching of the print nozzle, negatively impacting
build quality and precision [Dwivedi and Kovacevic 2004; Ding
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Figure 1: A new kind of “space-filling” curves called connected
Fermat spirals. Unlike classical space-filling curves which wind
and bend, the new curve is composed mostly of long, low-curvature
paths, making it desirable as a tool path fill patten for layered fabri-
cation. The tool path shown is continuous with start and end points
marked; the input 2D layer shape is displayed on the side.

et al. 2014]. Geometrically, sharp turns and corners are undesirable
since they lead to discretization artifacts at layer boundaries and
cause de-acceleration of the print head, both reducing print speed
and degrading fill quality [Jin et al. 2014].

Zigzag has been the most widely adopted fill pattern by today’s
3D printers due to its simplicity [Gibson et al. 2015]; see Figure 2
for various fill patterns. However, a zigzag fill consists of many
sharp turns, a problem that is amplified when printing shapes with
complex boundaries or hollow structures. A contour-parallel tool
path, formed by iso-contours of the Euclidean distance transform,
provides a remedy, but it leads to high contour plurality since the
iso-contours are disconnected from each other. A spiral fill pat-
tern, for simple shapes such as a square, is continuous. However,
for more complex shapes, both contour-parallel fills and spiral fills
tend to leave isolated “pockets” corresponding to singularities of
the distance transform, as shown in Figure 3(a). These pockets are
disconnected and result in path plurality. An intriguing geometry
question is whether a connected 2D region can always be filled by
a continuous pattern formed by one or more spirals.

http://dx.doi.org/10.1145/2897824.2925958


Figure 3: Overview of connected Fermat spiral algorithm. (a) Iso-contours via distance transform lead to four “pockets”. (b) Decomposition
into four sub-regions, each to be filled using a single Fermat spiral. (c) Connecting single spirals into a globally continuous curve. (d)
Visualization (lower resolution for ease of visualization) of the continuous curve through smooth color transition.

(a) Zigzag. (b) Contour-parallel. (c) Hilbert.

(d) Spiral. (e) Fermat spiral 1. (f) Fermat spiral 2.

Figure 2: Various space-filling patterns. For a Fermat spiral, the
start and exit points on the boundary can be chosen freely (e-f).

In this paper, we introduce the use of Fermat spirals [Wikipedia
2015] as a fundamental 2D fill pattern and develop a tool path plan-
ning algorithm based on connected Fermat spirals or CFS to con-
tinuously fill a connected 2D region. A Fermat spiral is an inter-
esting space-filling pattern with two interleaving sub-spirals, one
inward and one outward; see Figure 2(e). Fermat spirals had not
been exploited for tool path planning before and they possess three
key properties to make them attractive as a fill pattern:

1. Like contour-parallel paths, a Fermat spiral conforms to the
region boundary, with one sharp turn in the center.

2. Several Fermat spirals covering a 2D region can be contin-
uously connected. While a conventional spiral travels either
inward or outward, a Fermat spiral goes in and then out, al-
lowing several of them to be joined at their boundaries.

3. The start and exit points of a Fermat spiral can be chosen ar-
bitrarily over its boundary; see Figures 2(e-f). This special
property facilitates connections between Fermat spirals.

We develop an algorithm to construct a CFS curve to fill a singly-
connected 2D region. First, the algorithm decomposes the input
region into a set of sub-regions each of which admits a continuous
fill by a single Fermat spiral; we call these sub-regions spirallable.
The start and exit points for each Fermat spiral are placed next to
each other along the spiral boundary. We then obtain a continuous

traversal of the spirallable sub-regions and connect their respective
Fermat spirals through the start/exit points to form a globally con-
tinuous curve. Further optimization can be applied to improve fair-
ness and spacing. The resulting curve has fewer sharp turns than a
zigzag fill and composed mostly of long, low-curvature paths.

We show CFS curves constructed for input shapes with varying ex-
terior and interior complexity. We fabricate 2D layers and 3D prints
using CFS patterns and compare the results visually and numeri-
cally to those provided by conventional fills via zigzag and contour-
parallel tool paths. The new fill pattern appears to excel at handling
shapes with much concavity and many interior holes.

In retrospect, the desirable properties we seek from connected Fer-
mat spirals are almost completely opposite to those possessed by
classic space-filling curves such as Hilbert curves; see Figure 2(c).
Hilbert or Peano curves are designed to wind and bend to preserve
locality of the space traversal. CFS curves are meant to avoid bend-
ing as much as possible to attain a higher degree of fairness. In
general, CFS curves are not guaranteed to completely cover an arbi-
trary 2D region even at infinitely high resolution. As well, our new
curves do not possess recursive properties as the classical space-
filling curves. For layered fabrication however, the new curve is
clearly more attractive than fractal-like fill pattens.

2 Background and Related Work

Recently, there has been a flourishing of works in computer graph-
ics on optimizing 3D shapes or their configurations for efficient
and effective fabrication, e.g., to ensure or improve physical sta-
bility [Prévost et al. 2013], structural strength [Stava et al. 2012;
Hildebrand et al. 2013; Lu et al. 2014], or appearance [Zhang et al.
2015] of the print, to save material [Vanek et al. 2014b; Hu et al.
2014], and to adapt to the limited print volume [Luo et al. 2012;
Vanek et al. 2014a; Chen et al. 2015; Yao et al. 2015]

In this section, we focus on the tool path planning problem in the
context of additive manufacturing (AM). First, to explain the im-
portance of continuity and fairness for the tool paths, we present
some background material on nozzle mechanisms that control the
viscoelastic material that is extruded along the path, as well as the
mechanics of the motors that control the tool paths. Then we dis-
cuss related geometric and engineering approaches for optimizing
tool paths. Our coverage is not meant to be exhaustive. Interested
readers should refer to the book by Gibson et al. [2015], short sur-
veys from [Kulkarni et al. 2000; Ding et al. 2014], as well as the
recent SIGGRAPH course by Dinh et al. [2015].

Tool path continuity. Fused Deposition Modeling or FDM is the
most widely applied AM technology. During the FDM process,



filament is melted into viscoelastic material and extruded from a
small opening of the print nozzle. Due to liquid compressibility,
it is generally hard to predict the amount of viscoelastic material
to emit in order to create a continuous extrusion control. Conse-
quently, the first portion of the filament from the nozzle usually
under- or over-fills. Such uneven fills cause visual artifacts when
they occur near the surfaces of the printed object. When they occur
between fill paths, attachment between filaments can be weakened,
lowering the strength of the print. When turning off the extrusion,
the temporal gap between the stopping of the feed motor and that
of the filament extrusion is difficult to control, which again leads
uneven fills. Similar situations also arise when the print material is
fused by the print head, e.g., for powder-based printing. As well,
any discontinuity along a tool path necessitates a nozzle movement
which does not contribute to the print. Thus, the primary objective
in designing tool paths is to minimize the on/off switching along
the path, or in other words, to maximize its continuity.

Tool path geometry. The geometry of tool paths, in particular
their curvature, influences fabrication time and quality. As a tool
path rounds itself about a sharp turn, more de-acceleration and ac-
celeration times are required, causing more of a slow-down of the
extrusion head, as compared to the case of a soft turn. As well,
acute turn angles also lead to more over-fill or under-fill of the fil-
ament [Jin et al. 2014]. Hence, a long and continuous tool path
without sharp turns may enable the extrusion head to move along
the whole tool path at a speed that is close to the highest allowed
with small changes, leading to efficient and quality fabrication.

Direction-parallel vs. contour-parallel fills. The most popular
fill method in commercial AM systems follows the zigzagging pat-
tern [Ding et al. 2014]. Along with raster scans, zigzagging belongs
to the class of direction-parallel fills. In contrast, contour-parallel
paths are comprised of a set of closed contours parallel to the out-
line of a given slice [Yang et al. 2002]. Over simple 2D regions,
such paths lead to smoother turns and object boundaries compared
zigzagging [El-Midany et al. 1993], but they always have a high
contour plurality. Hybrid fills have also been proposed [Jin et al.
2013]; they generate a few contours inward before filling the re-
maining interior area with a zigzag, but attachment between the two
fill patterns can become suspect. When the 2D slice to be filled has
a complex shape with many concavities, standard implementations
of both fill patterns are prone to discontinuity issues.

Spiral tool paths. Spiral tool paths have been widely applied for
pocket machining [Ren et al. 2009]. Held and Spielberger [2014]
decompose a 2D layer into spirallable pockets and machine each
pocket following a separate, classical spiral pattern; no globally
continuous path was constructed. Spiral tool paths are less common
for AM and one major reason (also applicable to contour-parallel
fills) is that due to a lack of direction bias, spiral patterns for adja-
cent slices replicate each other and cannot be “cross-weaved” at an
angle; this could compromise fabrication strength for FDM print-
ers [Gibson et al. 2015]. This problem may be fixed by hybrid fills,
e.g., alternating between spiral and zigzagging layers. Our work
focuses on how to optimize the continuity of spiral fills.

Space-fill curves. A continuous tool path that fills a 2D region
is a space-filling curve (SFC). SFCs have been adopted for various
applications, e.g., image encoding [Dafner et al. 2000] and maze
design [Pedersen and Singh 2006]. Fractal-like SFCs have been
suggested as fill patterns for AM [Wasser et al. 1999]. However,
they are complex to realize and full of sharp turns. The tool path
fill problem has some resemblance to lawn mowing [Arkina et al.
2000], which is formulated under a rather different setting: it seeks
the shortest path for a “cutter” with a prescribed shape to cover all
points (possibly multiple times) in a 2D region.

Labyrinths. Mazes and many famous labyrinth patterns are also
space-filling [Wikipedia 2016]. A unicursal labyrinth curve is con-
tinuous and starts and ends at the same point, just like our connected
Fermat spirals. Pedersen and Singh [2006] developed a stochas-
tic curve evolution algorithm to produce expressive, space-filling
labyrinths where the Brownian motion of the curve particles are
subject to attraction-repulsion forces, as well as local fairness and
field alignment constraints. In contrast, our algorithm is top-down
and with more global structural control in the construction. The
resulting curves have smoother boundaries and less turns.

Domain decomposition. One interesting way to obtain a con-
tinuous tool path is to decompose a 2D region into several sub-
regions each of which admits a continuous fill. Then these regional
fills are connected to achieve global continuity. Along these lines,
[Dwivedi and Kovacevic 2004] decompose a polygon into mono-
tone sub-polygons and fill each sub-polygon using a closed zigzag-
ging curve, along which the start/entry point can be chosen arbi-
trarily. Ding et al. [2014] execute convex decomposition and for
each convex polygon, an optimal zigzagging direction is found to
facilitate continuous connection between the polygon fills. How-
ever, both methods were designed to deal with polygon inputs and
cannot properly handle shapes with smooth concave boundaries.

Our work also relies on a region decomposition while it can deal
with arbitrary 2D shapes as input. Instead of using zigzags, we
employ Fermat spiral fills to achieve both continuity and a higher
degree of fairness. The decomposition scheme is designed to ac-
commodate contour-parallel and spiral tool paths.

Continuously fillable shapes. Polygon convexity [Ding et al.
2014] and monotonicity [Dwivedi and Kovacevic 2004] were cho-
sen in the domain decomposition approaches to achieve tool path
continuity since both shape properties ensure a continuous fill by
the zigzagging pattern. For monotone polygons, a limited set of
scan directions guarantee this, while for a convex polygon, any scan
direction leads to a continuous zigzagging fill. Spirallability is their
counterpart for spiral or contour-parallel fills and to the best of our
knowledge, such a shape property has not been studied before.

3 Spirals, Fermat Spirals, and Spirallability

Before introducing spirals, we first study contour-parallel tool paths
and relate them to the Euclidean distance transform of a 2D region.
Then, we describe how to convert the parallel contours into a regu-
larly spaced spiral pattern and define spirallability. Finally, a spiral
fill is converted into a Fermat spiral fill, where we can choose the
start and end points on the boundary arbitrarily.

Contour-parallel path as iso-contour. LetR be a connected 2D
region whose boundary is denoted by ∂R. A Euclidean distance
transform for ∂R defines a scalar distance field DR over R where
for each point p ∈ R, DR(p) is the shortest distance from p to
∂R. An iso-contour associated with distance d is composed of all
points in R whose scalar value is d; the boundary ∂R is the iso-
contour associated with the iso-value 0. Subject to the width of the
fill material for the fabrication process, the set of contour-parallel
tool paths correspond to a set of equidistant iso-contours, which are
all disconnected from each other, as shown in Figure 4(a).

Spiral and spirallability. Two adjacent iso-contours can be con-
nected to form a single continuous path by breaking and rerouting
the contours, as shown in Figure 4(b). Rerouting adjacent contours
in such an offsetting fashion would lead to a spiral pattern. If the
distance field within R has a single local maximum or plateau, to
which all the iso-contours would ascend, then these contours can
be rerouted into a single continuous spiral path that fills the 2D



Figure 4: From contour-parallel paths (a) to a spiral (c), by break-
ing and rerouting adjacent iso-contours (b). In general, the dis-
tance transform has multiple local maxima (d). If the maximum is
unique, the region is spirallable (a-c).

Figure 5: Rerouting a spiral (a) into a Fermat spiral (c). (a) A
point p and its corresponding inward I(p) and outward link O(p),
as well as points B(p) andN (p) which are before and after p along
the path. (b) Starting at pin, reroute at p1 = B(pout) and go inward
to p2 = I(B(pout)), and continue. (c) Resulting Fermat spiral.

region R, as shown in Figure 4(c). We call such a region R spiral-
lable. Non-spirallable regions have multiple pockets corresponding
to separate local maxima and cannot be converted into a single con-
tinuous spiral with a simple rerouting as described.

Fermat spiral. A spiral fill path π for a spirallable region R can
be converted into a Fermat spiral. As we show below, we can also
choose the start and end/exit points of the Fermat spiral traversal
arbitrarily, with both points lying on the region boundary.

Starting from a point p ∈ π, trace the upward gradient line over the
distance field DR to intersect π at I(p), if it exists. If p is close
to the maximum of DR or center of the region R, where the path
π is thinning out, then the gradient line may not intersect π. We
call I(p) the inward link for p with respect to π; see Figure 5(a).
Similarly, we define the outward link O(p) for p by tracing the
downward gradient and intersect. If p lies on ∂R, then such an
intersection would not exist. The outward and inward links will
serve as rerouting points for the conversion to a Fermat spiral.

To help describe the rerouting procedure, we impose a partial order
≺ along path π based on inward traversal. Thus, the first point is
the end point of π on the region boundary and the last point is at
the region center. Two points p ≺ q if the inward traversal along π
reaches p before q. Next, we impose a discretization spacing δ and
denote the point preceding (respectively, succeeding) p along π at
a distance δ by B(p) (respectively,N (p)); see Figure 5(a).

Let pin be the starting point of π and suppose that we would like
the Fermat spiral to exist at pout along the outermost portion of π.
As shown in Figure 5(b), we start at pin and travel along π until
reaching p1 = B(pout). Then we reroute the path inward from p1 =
B(pout) to its inward link p2 = I(p1), continue traveling along π
until reaching p3 = B(I(B(p2))), and reroute from this point to its
inward link. This form of inward rerouting is executed iteratively
until reaching the center of the region, at which point, the traversal
is reversed into an outward one with a turn. The outward rerouting
is through the outward links, starting at the region center, passing
through portions of π that were not traversed during the inward
spiral, until the outward spiral exits at pout; see Figure 5(c).

Figure 6: An example of a spiral-contour tree with five spirallable
regions. (a) Interior decomposed sub-regions shown in distinctive
colors. The short red lines indicate connection locations. (b) The
minimum spanning tree of the spiral-contour tree. (c) Connecting
adjacent Fermat spirals to form a single continuous path.

The way the rerouting points are placed in the above conversion
procedure leads to jaggies or staircasing at every turn along the Fer-
mat spiral. These artifacts are removed by a post-optimization.

4 Continuous Fermat Spiral Fill

In this section, we describe our algorithm for constructing a contin-
uous path fill, as connected Fermat spirals, for an arbitrary, singly-
connected 2D region R. The key is to properly reroute levelset
curves or iso-contours derived from the Euclidean distance trans-
form of the region boundary ∂R. Within a pocket, the rerouting
produces a Fermat spiral. Between pockets and near branching re-
gions, rerouting serves to connect the spirals.

Given a prescribed path fill width w specifying spacing between
iso-contours, we construct the set L of iso-contours using the Clip-
per algorithm [Johnson 2015] over R. We index an iso-contour by
ci,j , where i indicates its distance from the region boundary ∂R,
d(∂R, ci,j) = (i−0.5)w, and j is an index among all iso-contours
with the same distance index i. For example, ci,j and ci,j′ with
j 6= j′, would belong to two separate pockets. Without loss of gen-
erality, we assume that c1,1 is always the outer region boundary ∂R.

We build a tree, called the spiral-contour tree, whose nodes are the
iso-contours and whose edges denote their connectivity with edge
weights encoding how preferable it is to connect the iso-contours.
The tree is used to recursively reroute the contours in a bottom-up
fashion, producing a single continuous path.

Tree construction. We first connect iso-contours with consecu-
tive iso-values, e.g., ci,j with ci+1,j′ , into an initial graph. To this
end, we define a connecting segment on ci,j towards ci+1,j′ as

Oi,j,j′ = {p ∈ ci,j | d(p, ci+1,j′) < d(p, ci+1,k), k 6= j′},

where d(p, c) denotes the distance from a point p to points along
a contour c. The segment Oi,j,j′ is formed by possible rerouting
points between the two iso-contours. We add an edge between ci,j
and ci+1,j′ to the graph if Oi,j,j′ 6= ∅. The weight assigned to the
edge is length(Oi,j,j′). The preference is to not reroute over a long
connecting segment since such a segment is preferred to remain
intact to form long, low-curvature paths.

After building the initial graph on iso-contours, we compute a
minimum-weight spanning tree, the spiral-contour tree, with c1,1 as
the root; see Figure 6(b). The tree nodes fall into two types. Type I
nodes have degrees less than or equal to two and they correspond to
iso-contours that form spirallable regions. Specifically, each such
region, e.g., R0, R1, . . . , R4 in Figure 6(a), is formed by a path of



Figure 7: Connected Fermat spirals before (left) and after (right)
local optimization. Observe improved curve spacing and reduction
of staircasing artifacts in the optimized spirals.

Type I nodes. Type II nodes have degrees greater than two, e.g.,
those colored in light blue in Figure 6(b), and they correspond to
branching iso-contours. Such an iso-contour provides an interface
between spirallable regions and possibly other Type II nodes.

Rerouting. To obtain a glob-
ally continuous path, we reroute
the iso-contours in a bottom-up
fashion, starting from leaf nodes
and ending at the root. There
are two types of rerouting op-
erations. The first connects iso-
contours in a spirallable region,
e.g., R0 in Figure 6, into a single Fermat spiral with start and exit
points next to each other. This operation follows the procedure de-
scribed in Section 3 and illustrated in Figure 5. The second opera-
tion connects the start and exit points of a Fermat spiral to a Type II
iso-contour, at the closest points (gray points), as shown in the in-
set figure. Wherever possible, rerouting points are reused to avoid
creating new points representing sharp turns.

Curve optimization. The tool path obtained so far is globally
continuous and covers the input regionR, but it is onlyC0 continu-
ous and possibly suffers from highly nonuniform spacing. In post-
processing, we locally optimize the curve to improve its fairness
and spacing. The current curve is first adaptively sampled based
on curvature so that more samples are placed near sharp turns. The
objective function is a weighted sum of three terms: the first term
penalizes large perturbations; the smoothing term is defined by a
chord-length weighted 1D discrete Laplacian; and the spacing term
keeps shortest distances between adjacent curve segments close to
a fixed, pre-defined patch spacing. We solve the optimization via
iterative Gauss-Newton until curve updates become negligible; a
result showing the paths before and after optimization is shown in
Figure 7. Implementation details of the optimization step, including
precise problem formulation, optimization procedure, and parame-
ter setting, can be found in the appendix.

5 Results

We show tool path generation results on shapes with varying de-
grees of concavity and hollowness. Comparisons are made to con-
ventional zigzag and contour-parallel fill patterns in terms of path
continuity, amount of sharp turns, print time, as well as visual qual-
ity of the interior fill and fabricated surface exterior.

3D printer and setting. Our experiments have been conducted
on a RepRap Prusa i3 FDM 3D printer with firmware Marlin 1.1.0-
RC. Printing results and analyses are based on the default printer

Input #segZ #segC %stZ %stC %stF
dancer 1 22 14 5.87% 1.40% 1.38%
dancer 2 19 10 6.58% 1.55% 1.08%
dancer 3 21 13 4.11% 1.19% 0.81%
crane 8 17 4.86% 0.46% 0.93%
butterfly 16 24 1.81% 0.83% 0.52%
hand 9 11 4.84% 1.07% 0.56%
gear 51 105 1.18% 2.11% 0.23%
paw 20 55 1.25% 0.51% 0.31%
h-slice1 53 58 4.35% 1.08% 0.81%
h-slice2 47 56 5.12% 0.88% 0.70%

Table 1: Number of tool path segments (#seg) and percentage of
sharp turn points (%st), which we explain in the text, for conven-
tional zigzag (Z), contour-parallel (C), and our CFS fills (F). The
10 shapes are from the last two rows of Figure 8.

setting, with tool path width set at 0.4mm, layer thickness at 0.2mm,
and maximal nozzle speed at 80 mm per second. G-code is used to
transfer the tool paths to the 3D printer.

Tool path generation. Figure 8 shows tool paths generated by
our algorithm for a variety of shapes with varying exterior and in-
terior structures. Note that the two honeycomb input shapes in Fig-
ure 8 and the one from Figure 1 are all 2D slices of the 3D porous
structures constructed by the work of Lu et al. [2014]. Each tool
path is continuous and composed of connected Fermat spirals. All
results are produced with the default parameter setting. There are
no tunable parameters for initial CFS construction. For curve opti-
mization, the parameters are fixed as discussed in the Appendix.

Table 1 shows the percentage of sharp turns and the number of dis-
connected tool path segments for three fill pattens: conventional
zigzag, contour-parallel fills, and ours. We do not report the lat-
ter number for CFS since it always produces a single path. All the
zigzag and contour-parallel paths shown and fabricated in our ex-
periments were generated with the Slic3r software [2016].

To count the number of sharp turns along a tool path π, we uni-
formly sample 50, 000 points along π and at each point, we esti-
mate its integral curvature [Pottmann et al. 2009] with a circle of
radius 0.2mm, which is appropriate for the size of fabricated lay-
ers and the default fill with in our experiments. A point is deemed
to represent a sharp turn if the smaller of its associated area cover-
age for curvature estimation is less than 30% of the circle area. In
Table 1, we report the percentages of points deemed as sharp turns.
It is quite evident that the number of sharp turns produced by CFS
is much lower than that of zigzags and it is more comparable to, but
generally still lower than, that of contour-parallel fills. On the other
hand, the latter exhibits high contour plurality.

We report running times of our algorithm in Table 2 for a partial
list of shapes in Figure 8; other relevant statistics are provided as
well. Currently, the spiral construction and connection algorithm is
implemented in C++ while the curve optimization phase is imple-
mented in MATLAB. All of the above times are measured on an
Intelr CoreTM i7-6700 CPU 4.0GHz with 16GB RAM.

Under- and over-fill. Under- and over-fills occur as a result of
non-uniform spacing between curve segments along a tool path.
Since it is difficult to measure the extent of these fill artifacts for
real prints, we provide an estimate by thickening a computed tool
path at its expected fill width and measure the intersection and gap
after the process. Figure 9 visualizes the over- and under-fills for
one CFS path before and after path optimization. Figure 10 (top)
compares the amount of under- and over-fills over several shapes.



Figure 8: A gallery of continuous CFS tool paths generated by our algorithm. Shown as insets, the input shapes, both synthetic and from
slices of fabricated 3D objects (see the honeycomb slices in last row as well as in Figure 1), exhibit varying degrees of complexity in terms of
convexity/concavity of boundaries and hollowness. The top two rows show lower-resolution results for ease of visualization. The bottom row
shows higher-resolution results, which are closer to that of real fabrication and also demonstrate robustness of our method.

Input #P #R CFSt (s) OPt (s) Total (s)
dancer 1 4 31 0.25 1.676 1.926
dancer 2 6 27 0.297 1.59 1.887
dancer 3 4 33 0.203 7.085 7.288
crane 2 42 0.125 1.917 2.042
butterfly 4 51 0.359 4.479 4.838
hand 1 30 0.125 7.277 7.402
gear 19 143 0.766 8.978 9.744
paw 8 147 0.813 9.429 10.242
h-slice 1 22 148 0.834 7.092 7.926
h-slice 2 22 145 0.95 7.412 8.362

Table 2: Some statistics and running times for our CFS tool path
generation algorithm. We report the number of pockets (#P) and
the number of rerouting points (#R) of the tool paths. For running
times, we report time needed for rerouting to generate the initial
connected Fermat spirals (CFSt) and time for curve optimization
(OPt), as well as the total. All running times are in seconds.

As one would expect, smoothing tends to increase gaps and under-
fills, especially near sharp corners (e.g., four corners of the rectan-
gular ‘G’ and many corners of the gear model). Overall, our curve
optimization (smoothing plus spacing) tends to increase under-fills
and reduce over-fills; see Figure 10. As shown in Figure 9, the

spacing term is seen to effectively remove or at least, more evenly
distribute, severe over-fills of an un-optimized path.

The inability of our current curve optimization scheme to fill all the
gaps can be attributed to limited curve movements. For example,
curves cannot be elongated to alleviate under-fills. Near sharp cor-
ners and turns, there is a trade-off between curve fairness and gap
size. Since the gaps are typically few and far inbetween, sacrificing
fairness at few places to fill the gaps, e.g., by elongating the curve
locally, is possible; we leave this for future work.

Visual quality. Figure 11 shows photos taken of four 2D layer
shapes (the ’S’, gear, and the two honeycomb slices from Figure 8)
fabricated using the three fill patterns. Figure 10 (bottom) plots the
estimated under- and over-fills over the four shapes.

Visually, we observe that zigzag incurs little under-fill and can gen-
erally maintain even material distribution along straight tool paths.
However, fill quality degrades near region boundaries, showing
both roughness and “aliasing” artifacts. The latter shows up near
boundaries which are close to being parallel to, but are not parallel
to, the scan direction (see the ‘S’ example). Since the zigzag fill
is not globally continuous, fill artifacts also occur over areas where
separate zigzag-filled segments join. In terms of estimated over-
fills, as shown in Figure 10 (bottom left), zigzag incurs a larger
amount than its counterparts since paths generated by Slic3r next



Figure 9: Estimated under- and over-fills visualized for a CFS
tool path. Left: before path optimization. Middle: path optimized
with even spacing only. Right: optimization with smoothing and
even spacing, our default post-processing scheme, attenuates se-
vere over-fills (dark blue spots in left), reduces total over-fills in
most cases, but may introduce more gaps, especially near sharp
corners (the four corners of the plate) due to curve smoothing.

Figure 10: Estimated over- and under-fill rate comparisons on the
four shapes from Figure 11. Top: Before and after curve optimiza-
tion. Bottom: comparison between the three fill methods zigzag (Z),
contour-parallel (C), and CFS.

to region boundaries have a distance smaller than 1
2
w to the bound-

aries, leading to excessive over-fills along these paths.

For contour-parallel fills, visible artifacts (under- or over-fills) oc-
cur near the center of pockets and between adjacent, but separately
contoured regions. In contrast, fabrication resulting from CFS ap-
pear to exhibit better overall quality with less visible artifacts. How-
ever, CFS appears to lead to relatively large amount of under-fills
due to curve smoothing; see Figure 10 (bottom right). Of course,
one should bear in mind that since 3D printing is a physical pro-
cess, random device imprecisions which may cause visible artifacts
in the filled layers are possible.

Figure 12 examines the surface qualify of a 3D object fabricated us-
ing our FDM printer, contrasting CFS fills to zigzag fills. The object
is formed by a 50-fold vertical extrusion of the gear layer from Fig-
ure 8; the final cylinder is 1cm tall. There are visible gaps from a
top view of the CFS fills, due to path smoothing as we discussed.
On the other hand, our tool path optimization effectively distributes
the (relatively large) total amount of under-fills over a large num-
ber of spots so that most individual gaps are small and can be filled
by melting of the filament material. From the side views, CFS fills
lead to smoother boundaries, while surface roughness arising from
zigzag fills is evident. However, the latter is typically corrected by
external contouring, but at the expense of under-fills between the
contoured exterior and boundaries of the interior zigzag fills.

Fabrication time. Figure 13 compares fabrication times recorded
on the RepRap Prusa 3D printer for the three fill methods. We ob-

Figure 12: Photographs of 3D fabrications using FDM. The object
is an extruded cylinder from the gear layer of Figure 8). A few views
and closeups are shown to reveal surface quality. Top: using CFS
fills. Bottom: the same gear cylinder fabricated with zigzag.

serve that while the fabrication speed for CFS tool paths is gener-
ally more favorable than their counterparts on an FDM printer, the
speed gains vary. For more complex layers, e.g., the honeycomb
slices, the speed gains tend to be more significant.

Comparison to evolved labyrinths. In Figure 14, we compare
our connected Fermat spirals to a result from stochastic curve evo-
lution by Pederson and Singh [2006]. The results become more vi-
sually comparable if the evolution is rewarded by better alignment
of the curves with the boundary of the input shape, as shown. How-
ever, the curve evolution performs inward erosions and as such, it
is unlikely to maintain a fair and outline-conforming exterior path
as our spiral approach. Moreover, the local stochastic movements
are likely to result in more sharp turns throughout.

6 Conclusion, limitation, and future work

We present a region fill algorithm using connected Fermat spi-
rals, achieving global continuity. Our algorithm extends the use of
spirals as space-filling curves from regular convex shapes to non-
convex shapes, even shapes with many interior holes. Our contri-
butions are two-fold. At a conceptual level, we introduce the use
of Fermat spirals to the construction of a new kind of space-filling
patterns. The construction reflects compelling properties of Fermat
spirals. The use of Fermat spirals prevents the curve from being
locked in pockets. Furthermore, the freedom allowed in choosing
start and end points along the boundary of a Fermat spiral facilitates
a scheme which systematically joins a set of Fermat spirals. Prac-
tically, the new curves possess appealing properties for tool path
planning in the context of layered fabrication.

In retrospect, connected Fermat spirals are not necessarily suitable
for all layer shapes. Compared to their counterparts, it appears that
they excel at filling layers with complex geometry, especially those
with many holes, to achieve higher build quality both inside and
on the exterior. If one were to print a 3D object with honeycomb
interiors [Lu et al. 2014], a sensible plan would be to print the mid-
dle slices using our CFS fills while topping off the print, where the
layer shapes are likely to be convex or spirallable, with zigzag or
hybrid fills, possibly alternating between them.

As discussed previously, the connected Fermat spirals are not guar-
anteed to be truly space-filling. They also lack the regularities
and mathematical rigors possessed by Peano or Hilbert curves; the
definition of connected Fermat spirals is constructive and not con-



Figure 11: Photographs of fabricated layers using three fill methods (bottom two rows). In each of the four groups, the left result is from
zigzag, the middle from contour-parallel, and the last from CFS. Top row shows schematic displays of the zigzag and contour-parallel fill
patterns; for zigzag, we color the disconnected fill segments. The CFS fill patterns for the four shapes can be found in Figure 8.

ceptual. Our current algorithm generally results in less number of
sharp turns compared to zigzag. However, it makes no attempt to
minimize them. The local curve optimization scheme also leaves
room for improvements. In particular, current curve displacements
cannot “slide” adjacent segments against each other or elongate
the curve to fill gaps. These operations are possible by adding
attraction-repulsion forces as in the curve evolution scheme of Ped-
ersen and Singh [2006]; we leave this for future work.

The amount of gains afforded by our new tool paths for layered
fabrication is dictated by the mechanics of the motor controllers
of the 3D printers. Contemporary, low-end printers rely on simple
motor controls, approximating a smooth curve by piecewise linear
segments. One may regard such a mechanism as catering to zigzag-
ging tool paths. This may also be accounted for as a limitation of
our approach, as we seek low-curvature but non-straight tool paths
and do not take advantage of the control mechanisms of these low-
end printers. On the other hand, it is possible to incorporate more
sophisticated look-ahead and adaptive speed control algorithms to
achieve higher motor speed for low-curvature but non-straight tool
paths [Wang and Cao 2012]. As well, higher-end printers with more
sophisticated controllers, like those of current Computer Numerical
Control (CNC) machines, can also achieve a higher motor speed
for tool path with smaller curvatures [Wang et al. 2010]. With such
controllers, Fermat spirals would incur a significant speed-up.

In the future, we would like to investigate the interplay between fill
patterns of consecutive layers. For better strength of FDM prints,
consecutive layers should not be fabricated with close-to-identical
fill patterns. Our construction scheme may be slightly perturbed so
that the Fermat spiral fills of consecutive layers may interweave.

Figure 13: Real 3D printing times (in seconds) for fabricating sev-
eral layer shapes, from the relatively simple ‘S’ to the more com-
plex honeycomb slices from Figure 8, using CFS (orange), contour-
parallel (C: cyan), and zigzag (Z: purple) tool path fills.

Another inter-layer optimization to consider is with respect to the
start and end points of each layer, in term of increasing the coher-
ence and avoiding redundant moves of the nozzle from one layer to
the next. Finally, it would be interesting to re-examine optimiza-
tion problems involving object orientation or decomposition while
taking into account how the resulting 2D slices are filled.
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Appendix: Details on Curve Optimization
Problem formulation. To formulate the objective function for
curve optimization, we discretize the input curve via curvature-
based sampling so that we place more samples around high-
curvature sections. Let p0

1, · · · ,p0
N denote the set of samples in

a sequential order. Our goal is to perturb these points so that the
path becomes smoother while it preserves a prescribed spacing con-
straint, i.e., the distance between neighboring curve segments shall
be fixed at d (the pre-defined patch spacing) as much as possible.

In our formulation, we consider three objectives. The first penalizes
the magnitude of the perturbations and it is formulated in the least

square sense, fregu =
N∑
i=1

|pip
0
i |2, where p1, · · · ,pN are sample

points and |pip
0
i | denotes edge length.

The second objective term is the smoothness potential. We modify
the standard mid-point scheme (e.g., pi + pi+2 ≈ 2pi+1) so that
it reflects the varying density. Specifically, we define

ui = |p0
i+1p

0
i |/(|p0

i+1p
0
i |+ |p0

i+2p
0
i+1|),

and formulate the smoothness potential as

fsmooth =

N−2∑
i=1

‖(1− ui)pi + uipi+2 − pi+1‖2.

The third objective term maintains the spacing after smoothing. To
this end, we compute for each point pi the closest points (or foot-
points) on the adjacent curve segments. There are two cases that
can occur for the footpoints. In the first case, they can lie on edges
and for each such edge pjpj+1, the footpoint is given by

fi,j = (1− ti,j)pj + ti,jpj+1,

ti,j = (pi − pj)
T (pj − pj+1)/|pjpj+1|2, (1)

with 0 ≤ ti,j ≤ 1. In the second case, they can lie on vertices and
for each such vertex pj , it satisfies ti,j ≤ 0 and ti,j−1 ≥ 1. To find
the footpoints that lie on adjacent curve segments, we pick foot-
points fi,j (or pj) so that pifi,j (or pipj) does not intersect with

Figure 15: An edge footpoint (left) and a vertex footpoint (right).

the existing curve. Let E = {(pi,pj ,pj+1)} and V = {pi,pj}
collect all triplets that specify edge footpoints and vertex footpoints,
respectively. We formulate the spacing-preserving term as

fspace =
∑

(pi,pj ,pj+1)∈E

(
|pifij | − d

)2
+

∑
(pi,pj)∈V

(|pipj | − d)2,

where fi,j is as defined in (1).

Combining the three terms into a weight sum, we arrive at the fol-
lowing optimization for spacing-preserving path smoothing:

minimize
p1,··· ,pN

frequ + αfsmooth + βfspace. (2)

In our experiments, we set α = 200 and β = 1.0.

Optimization. The objective function (2) includes both a discrete
component, i.e., the footpoint configuration E ,V , and a continuous
aspect, i.e., a non-linear least squares in terms of the curve vertex
positions. We propose to alternate between updating both. When
the curve vertex positions are fixed, we compute the footpoints us-
ing the procedure described above. When the footpoint configura-
tion is fixed, we apply Gauss-Newton method to optimize (2) due
to its non-linear least square nature.

Gauss-Newton optimization seeks a local displacement of each ver-
tex pi = pi + di to optimize (2). fregu and fsmooth are quadratic
in vertex positions, so we keep their expressions in the optimization.
Both |pifi,j | and |pipj | are non-linear, and we approximate them
via linear approximations derived from computing derivatives. De-
note ej = pj − pj+1, then |pifi,j | is approximated as:

|pif i,j | ≈ |pifi,j |+ gT
ij1di + gT

ij2dj + gT
ij3dj+1, (3)

where gij1, gij2, and gij3 are defined as,

gij1 =
pi − fi,j
|pifi,j |

, gij2 = −(1− tij)gij1 − gT
ij1ej

∂ti,j
∂pj

,

gij3 = −tijgij1 + tijg
T
ij1ej

∂ti,j
∂pj+1

. (4)

The second term |pipj | is approximated by

|pipj | ≈ |pipj |+ gT
ij(di − dj), (5)

where gij = (pi − pj)/|pipj |. Substituting (3) and (5) into (2),
we arrive at the following least squares for optimizing d1, · · · ,dN :

N∑
i=1

|diri|2 + α

N−2∑
i=1

‖(1− ui)di + uidi+2 − di+1 − r′i‖2

+ β
∑

(pi,pj ,pj+1)∈E

(
gT
ij1di + gT

ij2dj + gT
ij3dj+1 − rij

)2
+

∑
(pi,pj)∈V

(|pipj |+ gT
ij(di − dj)− d)2, (6)

where ri = p0
i − pi, r′i = pi+1 − (1 − ui)pi − uipi+2, rij =

d− |pifi,j |, and r′ij = d− |pipj |.

We minimize (6) by solving the induced linear system. Let d?
i be

the optimal displacement, the vertex at the next iteration is updated
as pi ← pi + d?

i . We terminate Gauss-Newon optimization when
max1≤i≤N ‖di‖ < 10−6. Once we have optimized the vertex po-
sitions, we proceed to recompute the footpoints. The procedure
alternates until the maximum displacement on curve positions is
below 10−5. In our experiments, we have found that 4-8 iterations
are sufficient for convergence in each phase.


